AMD's Radeon HD 5870: Bringing About the Next Generation Of GPUs
by Ryan Smith on September 23, 2009 9:00 AM EST- Posted in
- GPUs
DirectCompute, OpenCL, and the Future of CAL
As a journalist, GPGPU stuff is one of the more frustrating things to cover. The concept is great, but the execution makes it difficult to accurately cover, exacerbated by the fact that until now AMD and NVIDIA each had separate APIs. OpenCL and DirectCompute will unify things, but software will be slow to arrive.
As it stands, neither AMD nor NVIDIA have a complete OpenCL implementation that's shipping to end-users for Windows or Linux. NVIDIA has OpenCL working on the 8-series and later on Mac OS X Snow Leopard, and AMD has it working under the same OS for the 4800 series, but for obvious reasons we can’t test a 5870 in a Mac. As such it won’t be until later this year that we see either side get OpenCL up and running under Windows. Both NVIDIA and AMD have development versions that they're letting developers play with, and both have submitted implementations to Khronos, so hopefully we’ll have something soon.
It’s also worth noting that OpenCL is based around DirectX 10 hardware, so even after someone finally ships an implementation we’re likely to see a new version in short order. AMD is already talking about OpenCL 1.1, which would add support for the hardware features that they have from DirectX 11, such as append/consume buffers and atomic operations.
DirectCompute is in comparatively better shape. NVIDIA already supports it on their DX10 hardware, and the beta drivers we’re using for the 5870 support it on the 5000 series. The missing link at this point is AMD’s DX10 hardware; even the beta drivers we’re using don’t support it on the 2000, 3000, or 4000 series. From what we hear the final Catalyst 9.10 drivers will deliver this feature.
Going forward, one specific issue for DirectCompute development will be that there are three levels of DirectCompute, derived from DX10 (4.0), DX10.1 (4.1), and DX11 (5.0) hardware. The higher the version the more advanced the features, with DirectCompute 5.0 in particular being a big jump as it’s the first hardware generation designed with DirectCompute in mind. Among other notable differences, it’s the first version to offer double precision floating point support and atomic operations.
AMD is convinced that developers should and will target DirectCompute 5.0 due to its feature set, but we’re not sold on the idea. To say that there’s a “lot” of DX10 hardware out there is a gross understatement, and all of that hardware is capable of supporting at a minimum DirectCompute 4.0. Certainly DirectCompute 5.0 is the better API to use, but the first developers testing the waters may end up starting with DirectCompute 4.0. Releasing something written in DirectCompute 5.0 right now won’t do developers much good at the moment due to the low quantity of hardware out there that can support it.
With that in mind, there’s not much of a software situation to speak about when it comes to DirectCompute right now. Cyberlink demoed a version of PowerDirector using DirectCompute for rendering effects, but it’s the same story as most DX11 games: later this year. For AMD there isn’t as much of an incentive to push non-game software as fast or as hard as DX11 games, so we’re expecting any non-game software utilizing DirectCompute to be slow to materialize.
Given that DirectCompute is the only common GPGPU API that is currently working on both vendors’ cards, we wanted to try to use it as the basis of a proper GPGPU comparison. We did get something that would accomplish the task, unfortunately it was an NVIDIA tech demo. We have decided to run it anyhow as it’s quite literally the only thing we have right now that uses DirectCompute, but please take an appropriately sized quantity of salt – it’s not really a fair test.
NVIDIA’s ocean demo is a fairly simple proof of concept program that uses DirectCompute to run Fast Fourier transforms directly on the GPU for better performance. The FFTs in turn are used to generate the wave data, forming the wave action seen on screen as part of the ocean. This is a DirectCompute 4.0 program, as it’s intended to run on NVIDIA’s DX10 hardware.
The 5870 has no problem running the program, and in spite of whatever home field advantage that may exist for NVIDIA it easily outperforms the GTX 285. Things get a little more crazy once we start using SLI/Crossfire; the 5870 picks up speed, but the GTX 295 ends up being slower than the GTX 285. As it’s only a tech demo this shouldn’t be dwelt on too much beyond the fact that it’s proof that DirectCompute is indeed working on the 5800 series.
Wrapping things up, one of the last GPGPU projects AMD presented at their press event was a GPU implementation of Bullet Physics, an open source physics simulation library. Although they’ll never admit it, AMD is probably getting tired of being beaten over the head by NVIDIA and PhysX; Bullet Physics is AMD’s proof that they can do physics too. However we don’t expect it to go anywhere given its very low penetration in existing games and the amount of trouble NVIDIA has had in getting developers to use anything besides Havok. Our expectations for GPGPU physics remains the same: the unification will come from a middleware vendor selling a commercial physics package. If it’s not Havok, then it will be someone else.
Finally, while AMD is hitting the ground running for OpenCL and DirectCompute, their older APIs are being left behind as AMD has chosen to focus all future efforts on OpenCL and DirectCompute. Brook+, AMD’s high level language, has been put out to pasture as a Sourceforge project. Compute Abstract Layer (CAL) lives on since it’s what AMD’s OpenCL support is built upon, however it’s not going to see any further public development with the interface frozen at the current 1.4 standard. AMD is discouraging any CAL development in favor of OpenCL, although it’s likely the High Performance Computing (HPC) crowd will continue to use it in conjunction with AMD’s FireStream cards to squeeze every bit of performance out of AMD’s hardware.
327 Comments
View All Comments
Agentbolt - Wednesday, September 23, 2009 - link
Informative and well-written. My main question was "how future-proof is it?" I got the Radeon 9700 for DirectX9, the 8800GTS for DirectX10, and it looks like I may very well be picking this up for DirectX11. It's nice there's usually one card you can pick up early that'll run games for years to come at acceptable levels.kumquatsrus - Wednesday, September 23, 2009 - link
great article and great card btw. just wanted to point out that the gtx 285 also had 2x6 pins only required, i believe.Ryan Smith - Wednesday, September 23, 2009 - link
That's correct. I'm not sure how "275" ended up in there.SiliconDoc - Wednesday, September 23, 2009 - link
One wonders how the 8800GT ended up on the Temp/Heat comparison, until you READ the text, and it claims heat is "all over the place", then the very next line is "ALL the Ati's are up @~around 90C" .Yes, so temp is NOT alkl over the place, it's only VERY HIGH for ALL the ATI cards... and NVIDIA cards are not all very high...
-so it becomes CLEAR the 8800GT was included ONLY so the article could whine it was at 92C, since the 275 is @ 75C and the 260 is low the 285 is low, etc., NVidia WINS HANDS DOWN the temperature game...... buit the article just couldn't bring itself to be HONEST about that.
---
What a shame. Deception, the name of the game.
Ryan Smith - Wednesday, September 23, 2009 - link
The 8800GT, as was the 3870, was included to offer a snapshot of an older value product in our comparisons. The 8800GT in particular was a very popular card, and there are still a lot of people out there using them. Including such cards provides a frame of reference for performance for people using such cards.SiliconDoc - Wednesday, September 23, 2009 - link
Gee I cannot imagine load temps for the 4980 and 4870x2 exist anywhere else on this site along with the 260,275, and 285... can you ?Oh, how about I look...
Finally - Wednesday, September 23, 2009 - link
Nvidida-Trolls tend to turn green when feeling inferior.SiliconDoc - Wednesday, September 23, 2009 - link
Turning green was something the 40nm 5870 was supposed to do wasn't it ?Instead it turned into another 3D HEAT MONSTER, like all the ati cards.
Take a look at the power charts, then look at that "wonderful tiny ATI die size that makes em so much money!" (as they lose a billion plus a year), and then calculate that power into that tiny core, NOT minusing failure for framerates hence "less data", since of course ati cards are "faster" right ?
So you've got more power in a smaller footprint core...
HENCE THE 90 DEGREE CELCIUS RUNNING RATES, AND BEYOND.
---
Yeah, so sorry that it's easier for you to call names than think.
RubberJohnny - Wednesday, September 23, 2009 - link
LOL...replying to your own post 3 times...gettin all worked up about temps...PUTTIN STUFF IN CAPS...Looks like this fan boy just can't accept that the 5890 is a great card. Not surprising really, these reviews always seem to bring the fanboys/trolls/whackos out of the woodwork.
Once again, good job AT!!!
JarredWalton - Thursday, September 24, 2009 - link
SiliconDoc, you should try thinking instead of trolling. Why would the maximum be around 90C? Because that's what the cards are designed to target under load. If they get hotter, the fan speeds would ramp up a bit more. There's no need to run fans at high rates to cool down hardware if the hardware functions properly.Reviewing based on max temperatures is a stupid idea when other factors come into play, which is why one page has power draws, temperatures, and noise levels. The GTX 295 has the same temperature not because it's "as hot" but because the fan kicked up to a faster speed to keep that level of heat.
The only thing you can really conclude is that slower GPUs generate less heat and thus don't need to increase fan speeds. The 275 gets hotter than the 285 as well by 10C, but since the 285 is 11.3 dB louder I wouldn't call it better by any stretch. It's just "different".