Once More, With Feeling

Ryan said we’d lose some sequential write performance. The drive would no longer be capable of 230MB/s writes, perhaps only down to 80 or 90MB/s now. I told him it didn’t matter, that write latency needed to come down and if it were at the sacrifice of sequential throughput then it’d be fine. He asked me if I was sure, I said yes. I still didn’t think he could do it.

A couple days later and I got word that OCZ just got a new firmware revision back from Korea with the changes I’d asked for. They were going to do a quick test and if the results made me happy, they’d overnight a drive to me for Saturday delivery.

He sent me these iometer results:


The New Vertex was looking good, but was it too good to be true?

I couldn’t believe it. There was no way. “Sure”, I said, “send the drive over”. He asked if I’d be around on Saturday to receive it. I would be, I’m always around.

This was the drive I got:

No markings, no label, no packaging - just a black box that supposedly fixed all of my problems. I ran the iometer test first...it passed. I ran PCMark. Performance improved. There’s no way this thing was fixed. I skipped all of the other tests and threw it in my machine, once again cloning my system drive. Not a single pause. Not a single stutter.

The drive felt slower than the Intel or Summit drives, but that was fine, it didn’t pause. My machine was usable. Slower is fine, invasive with regards to my user experience is not.

I took the Vertex back out and ran it through the full suite of tests. It worked. Look at the PCMark Vantage results to see just what re-focusing on small file random write latency did to the drive’s performance:

The Vertex went from performing like the OCZ Apex (dual JMicron JMF602B controllers) to performing more like an Intel X25-M or OCZ Summit. I’ll get to the full performance data later on in this article, but let’s just say that we finally have a more affordable SSD option. It’s not the fastest drive in the world, but it passes the test for giving you the benefits of a SSD without being worse in some way than a conventional hard drive.

As the Smoke Cleared, OCZ Won Me Over

Now let’s be very clear what happened here. OCZ took the feedback I gave them, and despite it resulting in a product with fewer marketable features implemented the changes. It’s a lot easier to say that your drive is capable of speeds of up to 230MB/s than it is to say it won’t stutter, the assumption is that it won’t stutter.

As far as I know, this is the one of the only reviews (if not the only) at the time of publication that’s using the new Vertex firmware. Everything else is based on the old firmware which did not make it to production. Keep that in mind if you’re looking to compare numbers or wondering why the drives behave differently across reviews. The old firmware never shipped thanks to OCZ's quick acting, so if you own one of these drives - you have a fixed version.

While I didn’t really see eye to eye with any of the SSD makers that got trashed in the X25-M review, OCZ was at least willing to listen. On top of that, OCZ was willing to take my feedback, go back to Indilinx and push for a different version of the firmware despite it resulting in a drive that may be harder to sell to the uninformed. The entire production of Vertex drives was held up until they ended up with a firmware revision that behaved as it should. It’s the sort of agility you can only have in a smaller company, but it’s a trait that OCZ chose to exercise.

They were the first to bring an Indilinx drive to the market, the first to produce a working drive based on Samsung’s latest controller, and the company that fixed the Indilinx firmware. I’ve upset companies in the past and while tempers flared after the X25-M review, OCZ at least made it clear this round that their desire is to produce the best drive they could. After the firmware was finalized, OCZ even admitted to me that they felt they had a much better drive; they weren’t just trying to please me, but they felt that their customers would be happier.

I should also point out that the firmware that OCZ pushed for will now be available to all other manufacturers building Indilinx based drives. It was a move that not only helped OCZ but could help every other manufacturer who ships a drive based on this controller.

None of this really matters when it comes to the drive itself, but I felt that the backstory was at least just as important as the benchmarks. Perhaps showing you all a different side of what goes on behind the scenes of one of these reviews.

Disappointed, I went back to OCZ The OCZ Summit: First with Samsung’s New Controller
Comments Locked

250 Comments

View All Comments

  • SunSetSupaNova - Wednesday, March 18, 2009 - link

    Just wanted to say great job Anand on a great article, it took me a while to read it from start to finish but it was well worth it!

  • FHDelux - Wednesday, March 18, 2009 - link

    That was the best review i have read in a long time. I originally bought an OCZ Core drive when they first came out. It was the worst piece of garbage i had ever used. Newegg wouldn't let me send it back and OCZ support forums told me all sorts of junk to get me to fix it but it was just a poorly designed drive. I eventually ended up getting the egg to take it back for credit and i wrote OCZ off as a company blinded by the marketing department. I currently own an Intel SSD and its wonderfull, everytime i see OCZ statements saying their drive competes with the Intel drive i would laugh and think back to the OCZ techs telling me i need to update my bios, or i need to install vista service pack 1 before it would work right.

    I am thankful that you slapped that OCZ big wig around until they made a good product. All of us out there that wasted our time and money on Pre-vertex generation drives are greatfull to you and the whole industry should be kissing your butt right now.

    One thing these companies need to learn is that marketing isn't the answer, creating solid products is. Hopefully OCZ has learned their lesson, and because of your article i will give them another chance.

    THANK YOU!
  • kelstertx - Wednesday, March 18, 2009 - link

    I didn't want to worry about eventual failure of the Flash chips of an SSD, and went with an SDRAM based Ramdrive from Acard. These drives have no latency of any kind, since they use SDRAM, and no lifespan of write cycles. I've been using mine for a couple of weeks now, and I like it a lot. I put Ubuntu on mine, and had 2G left for my small home folder. The standard HDD is my long-term storage for data files, music, etc. As SDRAM gets more affordable over time, I can add DIMMs and bump up the size.

    I know this review was about SSDs strictly, so an SDRAM drive doesn't technically fit, but it would have been interesting to see a 9010 or 9010b in there for comparison. It beat the Intel SSD in almost all the tests. http://techreport.com/articles.x/16255/1">http://techreport.com/articles.x/16255/1

  • 7Enigma - Wednesday, March 18, 2009 - link

    I've been eying these guys ever since the announced their first press release. Every time I always was drawn away by the constant need for power (4h max on battery scares the bejeezus out of me if I was to be gone on vacation during a storm), high power usage at all times, and high cost of entry (after factoring in all of the ram modules).

    I really dislike that article as well, since I think the bottlenecks were much less apparent with such a horribly slow cpu. The majority of that review's data is extremely compressed. I mean a P4, and 1 gig of memory; are you F'ing kidding me? This article was written in Jan of this year!? Why didn't they just use my old 486DX?
  • tirez321 - Wednesday, March 18, 2009 - link

    What would a drive zeroing tool do to write performance, like if you used acronis privacy expert to zero only the "free space" regularly? Would it help write performance due to the drive not having to erase pages before writing?
  • tirez321 - Wednesday, March 18, 2009 - link

    I can kinda see that it wouldn't now.
    Because there would still be states there regardless.
    But if you could inform the drive that it is deleted somehow, hmm.

  • strikeback03 - Wednesday, March 18, 2009 - link

    The subjective experiences with stuttering are more important to me than most of the test numbers. Other tests I have found of the G.Skill Titan and similar have looked pretty good, but left out mention of stuttering in use.

    Too bad, as the 80GB Intel is too small and the ~$300 for a 120GB is about the most I am willing to pay. Maybe sometime this year the OCZ Vertex or similar will get there.
  • strikeback03 - Tuesday, March 24, 2009 - link

    When I wrote that, the Newegg price for the 120GB Vertex was near $400. Now they have it for $339 with a $30 MIR. Now that's progress.
  • kamikaz1k - Wednesday, March 18, 2009 - link

    the latency times are switched...incase u wanted to kno.
    also, first post ^^ hallo!
  • GourdFreeMan - Wednesday, March 18, 2009 - link

    It seems rather premature to assume the ATA TRIM command will significantly improve the SSD experience on the desktop. If you were to use TRIM to rewrite a nonempty physical block, you do not avoid the 2ms erase penalty when more data is written to that block later on and instead simply add the wear of another erase cycle. TRIM, then, is only useful for performance purposes when an entire 512 KiB physical block is free.

    A well designed operating system would have to keep track of both the physical and logical maps of used space on an SSD, and only issue TRIM when deletion of a logical cluster coincides with the freeing of an entire physical block. Issuing TRIMs at any other time would only hurt performance. This means the OS will have significantly fewer opportunities to issue TRIMs than you assume. Moreover, after significant usage the physical blocks will become fragmented and fewer and fewer TRIMs will be able to be issued.

    TRIM works great as long as you only deal with large files, or batches of small files contiguously created and deleted with significant temporal locality. It would greatly aid SSDs in the "used" state Anand artificially creates in this article, but on a real system where months of web browsing, Windows updates and software installing/uninstalling have occurred the effect would be less striking.

    TRIM could be mated with periodic internal (not filesystem) defragmentation to mitigate these issues, but that would significantly reduce the lifespan of the SSD...

    It seems the real solution to the SSD performance problem would be to decrease the size of the physical block... ideally to 4 KiB, as that is the most common cluster size on modern filesystems. (This assumes, of course, that the erase, read and write latencies could be scaled down linearly.)

Log in

Don't have an account? Sign up now