Final Words

Well, we've known it was coming for quite a while. We knew it would be a many-core CPU architecture well suited to graphics. And with as much information as we were given, when we sat down to look at what we had we felt like we still didn't know anything about Larrabee. Piles of data and information, insight into how a software render would fit on top of the underlying architecture... it has left us with the feeling that all this is a really cool idea with great potential, but we just don't have any idea what or how well it will do when it finally hits.

Of course, this is the first time any real detail has been given, and any hint of product is at least 12 to 18+ months off. We can't expect Intel to give everything away right off the bat. We are very happy to have the detail we do, and can't wait to get more.

While we are very interested in the architecture from the sort of technophile point of view that we can't help but have, technology for technology sake (no matter how cool the theory behind it might be) amounts to nothing without real-world application and benefit. For Larrabee it will all come down to peformance and price.

AMD has shown that you don't need to be on top to compete. As long as performance somewhere in the middle of the pack can be produced, appropriate and aggressive pricing can go quite a long way. For the consumer it is always a cost/benefit analysis, and there are quite a number of computers with $100 - $300 graphics cards under the hood. If compatibility is there, if performance is there, and if Intel is able to price it right, the first round of Larrabee hardware doesn't need to be ground breaking.

Getting a good foothold and sticking it out for the long haul should be Intel's goal. Compatibility (especially with the track record of Intel's integrated graphics) is likely more important than pure performance. Getting product out there into the market is necssary before developers will even start to take a chance on pushing the hardware itself. And this is where Larrabee could really shine.

Opening the door to fully programmable rendering and making it attractive enough for developers to start pushing the envelope will be a long process. The current game development arena is all about return on investment, and except for a few brave souls we will likely see game and engine developers stick to DirectX 10 for quite some time even after DX 11 comes along. Those who venture into the realm of pure software renderes written for a highly data-parallel CPU will be the exception rather than the norm.

Things That Could Go Wrong
Comments Locked

101 Comments

View All Comments

  • ocyl - Monday, August 4, 2008 - link

    Larrabee will be shipped when Diablo III is, and it will mark the beginning of the end for DirectX.

    Calling it first here at AnandTech.

    Thanks go to Anand and Derek for the very well written article. You are the ones who keep tech journalism alive.
  • erikespo - Monday, August 4, 2008 - link

    "At 143 mm^2, Intel could fit 10 Larrabee-like cores so let's double that. Now we're at 286mm^2 (still smaller than GT200 and about the size of AMD's RV770) and 20-cores. Double that once more and we've got 40-cores and have a 572mm^2 die, virtually the same size as NVIDIA's GT200 but on a 65nm process. "

    this math is way off

    143 mm^2 is 20449mm.. if they fit 10 there that is 2044.9 per core
    286mm^2 is 81796mm.. that is 4X the space so 40 cores in 286^2
    and 572mm^2 is 327184mm is 160 cores..

    double length will double area.. doubling length and width will quadruple area.
  • bauerbrazil - Monday, August 4, 2008 - link

    Hahahaha, YOUR math is way off!!!

    Jesus.
  • erikespo - Monday, August 4, 2008 - link

    I see where the article and you got your math..
    you both did 143mm^2 / 10 and got 14.3 then divided 286^2 by 14.3 and got 20.. this math is only acting on the one number..

    I know this because the area of 14.3 is 204.49 mm. 10 of those would be 2044.9mm. but the area of 143mm^2 is 20449mm.
  • WeaselITB - Monday, August 4, 2008 - link

    Wow ... No.
    143mm^2 is NOT equivalent to 143^2 mm ... Your analysis is flawed.

    If we use your example, 2mm^2 is NOT 2mm x 2mm ... it's actually root(2)mm x root(2)mm ... 4mm^2 is 2mm x 2mm, not 4mm x 4mm (that'd be 16mm).

    Maybe you should examine in depth that Wikipedia article you linked earlier ...

    Thanks,
    -Weasel
  • MamiyaOtaru - Monday, August 4, 2008 - link

    143mm^2 is NOT equivalent to 143^2 mm

    ^^THIS

    That's it in a nutshell. mm² doesn't mean you square 143, it refers to Square Millimeters, a unit of area (unlike Millimeters, a unit of distance).

    Revised mspaint illustration: http://img379.imageshack.us/my.php?image=squaremmh...">http://img379.imageshack.us/my.php?image=squaremmh...
  • erikespo - Monday, August 4, 2008 - link

    Anandtech Comment Section.. Forever record of my retardedness
  • erikespo - Monday, August 4, 2008 - link

    Dang.. Many apologies..
    got my square area and squared numbers confused..
  • WeaselITB - Monday, August 4, 2008 - link

    [quote]4mm^2 is 2mm x 2mm, not 4mm x 4mm (that'd be 16mm).[/quote]

    Dang, that was supposed to read "(that'd be 16mm^2)."

    Thanks,
    -Weasel
  • erikespo - Monday, August 4, 2008 - link

    another way to look as it is how man 143mm^2 squares does it take to make up 286mm^2?

    only 2 would only be 143mm x 286mm

    since 10 cores fit into 143 x 143, 20 will fit into 143 x 286mm
    286 x 286 (which is double that of 143 x 286mm) the 286mm^2 would fit 40

Log in

Don't have an account? Sign up now